cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159885 For n >= 1, let f(2n+1) = (3n+2)/A006519(3n+2) and let f^k be the k-th iteration of f. Then a(n) is the least k such that A000120(f^k(2n+1)) <= A000120(n).

This page as a plain text file.
%I A159885 #14 Sep 23 2018 20:58:05
%S A159885 2,1,2,6,1,1,2,3,3,1,1,4,1,1,2,8,2,3,3,39,1,1,1,4,3,1,1,2,1,1,2,8,5,2,
%T A159885 2,41,3,2,3,5,5,1,1,1,1,1,1,42,2,1,4,6,1,1,1,2,2,1,1,2,1,1,2,44,5,5,5,
%U A159885 31,5,2,2,41,7,1,3,3,3,2,3,34,3,5,13,12,1,1,1,1,1,1,1,1,1,1,1,42,8,1,2,4,1
%N A159885 For n >= 1, let f(2n+1) = (3n+2)/A006519(3n+2) and let f^k be the k-th iteration of f. Then a(n) is the least k such that A000120(f^k(2n+1)) <= A000120(n).
%C A159885 Conjecture: a(n) exists for every n >= 1. It is easy to see that this conjecture is equivalent to the well-known Collatz 3x+1 conjecture.
%H A159885 Antti Karttunen, <a href="/A159885/b159885.txt">Table of n, a(n) for n = 1..65537</a>
%H A159885 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%o A159885 (PARI)
%o A159885 A006519(n) = (1<<valuation(n, 2));
%o A159885 f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined only for odd n. Cf. A075677.
%o A159885 A159885(n) = { my(w=hammingweight(n), n = (n+n+1)); for(k=1,oo,n = f(n); if(hammingweight(n) <= w, return(k))); }; \\ _Antti Karttunen_, Sep 22 2018
%Y A159885 Cf. A006519, A007814, A000120, A159945, A160198, A160266.
%K A159885 nonn,look
%O A159885 1,1
%A A159885 _Vladimir Shevelev_, Apr 25 2009, Apr 27 2009
%E A159885 Edited by _N. J. A. Sloane_, May 03 2009
%E A159885 a(25) corrected, sequence extended by _R. J. Mathar_, May 15 2009