This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159889 #17 Sep 08 2022 08:45:44 %S A159889 1,32,-34,-68800,-2093684,224163712,18248827144,-839028775168, %T A159889 -161999734633840,1917548044739072,1603923010615074784, %U A159889 31037878026343011328,-17673243900695263973696,-959600704244699318978560,212370574074332282486900864,21009464001651119352291258368 %N A159889 Numerator of Hermite(n, 16/23). %H A159889 G. C. Greubel, <a href="/A159889/b159889.txt">Table of n, a(n) for n = 0..385</a> %F A159889 From _G. C. Greubel_, Jul 11 2018: (Start) %F A159889 a(n) = 23^n * Hermite(n, 16/23). %F A159889 E.g.f.: exp(32*x - 529*x^2). %F A159889 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159889 Numerators of 1, 32/23, -34/529, -68800/12167, -2093684/279841.. %t A159889 Numerator[Table[HermiteH[n,16/23],{n,0,40}]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 21 2011*) %t A159889 Table[23^n*HermiteH[n, 16/23], {n,0,30}] (* _G. C. Greubel_, Jul 11 2018 *) %o A159889 (PARI) a(n)=numerator(polhermite(n, 16/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159889 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(32/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 11 2018 %Y A159889 Cf. A009967 (denominators) %K A159889 sign,frac %O A159889 0,2 %A A159889 _N. J. A. Sloane_, Nov 12 2009