This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159904 #17 Sep 08 2022 08:45:44 %S A159904 1,34,98,-68612,-2643860,200474744,20802160696,-565340211248, %T A159904 -173282369297008,-1106561008095200,1612371646170873376, %U A159904 66528051435456910784,-16502827469331089383232,-1405736274981817978343552,179184855663797992113292160,26914050797599819627076625664 %N A159904 Numerator of Hermite(n, 17/23). %H A159904 G. C. Greubel, <a href="/A159904/b159904.txt">Table of n, a(n) for n = 0..385</a> %F A159904 From _G. C. Greubel_, Jul 16 2018: (Start) %F A159904 a(n) = 23^n * Hermite(n, 17/23). %F A159904 E.g.f.: exp(34*x - 529*x^2). %F A159904 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(34/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159904 Numerators of 1, 34/23, 98/529, -68612/12167, -2643860/279841, ... %t A159904 HermiteH[Range[0,20],17/23]//Numerator (* _Harvey P. Dale_, Apr 08 2018 *) %t A159904 Table[23^n*HermiteH[n, 17/23], {n,0,30}] (* _G. C. Greubel_, Jul 16 2018 *) %o A159904 (PARI) a(n)=numerator(polhermite(n, 17/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159904 (PARI) x='x+O('x^30); Vec(serlaplace(exp(34*x - 529*x^2))) \\ _G. C. Greubel_, Jul 16 2018 %o A159904 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(34/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 16 2018 %Y A159904 Cf. A009967 (denominators). %K A159904 sign,frac %O A159904 0,2 %A A159904 _N. J. A. Sloane_, Nov 12 2009