This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159922 #10 Mar 20 2020 09:37:44 %S A159922 643266,8813528,1644953,440421,2826655,1339785,2775232,988180,196973, %T A159922 643136,4122122,3477939,182124,6195602,130854,4937610,2725523,6118932, %U A159922 231670,478208,2405748,3913626,1033788,2945487,22952758,7168835,15528738,2753214,2407038,37795639 %N A159922 Least index m such that the five numbers 2*prime(m+k) + 3^n, k=0 to 4, are five consecutive primes. %F A159922 a(1) = A102810(1) = A102811(5) = A089009(11). - _R. J. Mathar_, Apr 28 2009 %e A159922 For n=15, prime(m=130854) = 1739401 starts the prime sequence 1739401, 1739411, 1739417, 1739443, 1739447 of five consecutive primes. %e A159922 With 3^n = 3^15 = 14348907, the five numbers 17827709 = 2*1739401+14348907, 17827729 = 2*1739411 + 14348907, 17827741 = 2*1739417 + 14348907, 17827793 = 2*1739443 + 14348907, 17827801 = 2*1739447 + 14348907 are consecutive primes, and m = 130854 is the smallest prime index of this kind, so a(n=15) = 130854. %o A159922 (PARI) a(n) = {my(m=1, p=[2, 3, 5, 7, 11], q, x=3^n); while(ispseudoprime(q=(2*p[1]+x)) + sum(k=2, 5, (q=nextprime(q+1))==2*p[k]+x) < 5, m++; p=concat(p[2..5], nextprime(p[5]+1))); m; } \\ _Jinyuan Wang_, Mar 20 2020 %K A159922 nonn %O A159922 1,1 %A A159922 _Pierre CAMI_, Apr 26 2009 %E A159922 Edited by _R. J. Mathar_, Apr 28 2009 %E A159922 Replaced the wrong value 14348916 by 14348907 (3^15=14348907). - _Pierre CAMI_, May 09 2009 %E A159922 More terms from _Jinyuan Wang_, Mar 20 2020