A159934 Triangle, row sums = d(n) = A000005(n): M * Q; where M = an infinite lower Toeplitz matrix with A159933 in every column. Q = an infinite lower triangular matrix with d(n) shifted: (1, 1, 2, 2, 3, 2, 4, ...) as the main diagonal and the rest zeros.
1, 1, 1, -1, 1, 2, 0, -1, 2, 2, -1, 0, -2, 2, 3, 2, -1, 0, -2, 3, 2, -1, 2, -2, 0, -3, 2, 4, -1, -1, 4, -2, 0, -2, 4, 2, 3, -1, -2, 4, -3, 0, -4, 2, 4, -4, 3, -2, -2, 6, -2, 0, -2, 4, 3, 2, -4, 6, -2, -3, 4, -4, 0, -4, 3, 4
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; -1, 1, 2; 0, -1, 2, 2; -1, 0, -2, 2, 3; 2, -1, 0, -2, 3, 2; -1, 2, -2, 0, -3, 2, 4; -1, -1, 4, -2, 0, -2, 4, 2; 3, -1, -2, 4, -3, 0, -4, 2, 4; -4, 3, -2, -2, 6, -2, 0, -2, 4, 3; 2, -4, 6, -2, -3, 4, -4, 0, -4, 3, 4; 2, 2, -8, 6, -3, -2, 8, -2, 0, -3, 4, 2; -3, 2, 4, -8, 9, -2, -4, 4, -4, 0, -4, 2, 6; 0, -3, 4, 4, -12, 6, -4, -2, 8, -3, 0, -2, 6, 2; 0, 0, -6, 4, 6, -8, 12, -2, -4, 6, -4, 0, -6, 2, 4; 6, 0, 0, -6, 6, 4, -16, 6, -4, -3, 8, -2, 0, -2, 4, 4; ... Example: row 6 = (2, -1, 0, -2, 3, 2) = termwise products of (2, -1, 0, -1, 1, 1) and (1, 1, 2, 2, 3, 2); with dot product sum = 4 = d(6).
Comments