This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159946 #13 Sep 08 2022 08:45:44 %S A159946 1,40,542,-62960,-4238708,96898400,26298701320,436837009600, %T A159946 -177294701591920,-10789176512931200,1256633088041014240, %U A159946 164414811028452665600,-8048103437483217101120,-2409334578316563726502400,14320231546481618948708480,36259873035884206674901888000 %N A159946 Numerator of Hermite(n, 20/23). %H A159946 G. C. Greubel, <a href="/A159946/b159946.txt">Table of n, a(n) for n = 0..385</a> %F A159946 From _G. C. Greubel_, Jul 16 2018: (Start) %F A159946 a(n) = 23^n * Hermite(n, 20/23). %F A159946 E.g.f.: exp(40*x - 529*x^2). %F A159946 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(40/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159946 Numerators of 1, 40/23, 542/529, -62960/12167, -4238708/279841, ... %t A159946 Numerator[Table[HermiteH[n, 20/23], {n, 0, 30}]] (* or *) Table[23^n * HermiteH[n, 20/23], {n, 0, 30}] (* _G. C. Greubel_, Jul 16 2018 *) %o A159946 (PARI) a(n)=numerator(polhermite(n, 20/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159946 (PARI) x='x+O('x^30); Vec(serlaplace(exp(40*x - 529*x^2))) \\ _G. C. Greubel_, Jul 16 2018 %o A159946 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(40/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 16 2018 %Y A159946 Cf. A009967 (denominators). %K A159946 sign,frac %O A159946 0,2 %A A159946 _N. J. A. Sloane_, Nov 12 2009