This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159947 #15 Sep 08 2022 08:45:44 %S A159947 1,42,706,-59220,-4728084,52039512,27197223864,811936580112, %T A159947 -167321303572080,-13899725964095328,1009444962121341984, %U A159947 189455789109224933568,-3790777326580730799936,-2564543346247110450176640,-55572469192587267485099136,35651972338523534753642227968 %N A159947 Numerator of Hermite(n, 21/23). %H A159947 G. C. Greubel, <a href="/A159947/b159947.txt">Table of n, a(n) for n = 0..385</a> %F A159947 From _G. C. Greubel_, Jul 16 2018: (Start) %F A159947 a(n) = 23^n * Hermite(n, 21/23). %F A159947 E.g.f.: exp(42*x - 529*x^2). %F A159947 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(42/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159947 Numerators of 1, 42/23, 706/529, -59220/12167, -4728084/279841, ... %t A159947 Numerator[HermiteH[Range[0,20],21/23]] (* _Harvey P. Dale_, Dec 18 2015 *) %t A159947 Table[23^n * HermiteH[n, 21/23], {n, 0, 30}] (* _G. C. Greubel_, Jul 16 2018 *) %o A159947 (PARI) a(n)=numerator(polhermite(n, 21/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159947 (PARI) x='x+O('x^30); Vec(serlaplace(exp(42*x - 529*x^2))) \\ _G. C. Greubel_, Jul 16 2018 %o A159947 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(42/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 16 2018 %Y A159947 Cf. A009967 (denominators). %K A159947 sign,frac %O A159947 0,2 %A A159947 _N. J. A. Sloane_, Nov 12 2009