This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159948 #13 Sep 08 2022 08:45:44 %S A159948 1,44,878,-54472,-5183540,2449744,27528715336,1195712499872, %T A159948 -151266315784048,-16776228493414720,702203805185457376, %U A159948 208389464888487862144,996888570345112992448,-2601849549129056926112512,-128192585558205188847080320,32898121757138562880306993664 %N A159948 Numerator of Hermite(n, 22/23). %H A159948 G. C. Greubel, <a href="/A159948/b159948.txt">Table of n, a(n) for n = 0..385</a> %F A159948 From _G. C. Greubel_, Jul 16 2018: (Start) %F A159948 a(n) = 23^n * Hermite(n, 22/23). %F A159948 E.g.f.: exp(44*x - 529*x^2). %F A159948 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(44/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159948 Numerators of 1, 44/23, 878/529, -54472/12167, -5183540/279841, ... %t A159948 Numerator[Table[HermiteH[n, 22/23], {n, 0, 30}]] (* or *) Table[23^n * HermiteH[n, 22/23], {n, 0, 30}] (* _G. C. Greubel_, Jul 16 2018 *) %o A159948 (PARI) a(n)=numerator(polhermite(n, 22/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159948 (PARI) x='x+O('x^30); Vec(serlaplace(exp(44*x - 529*x^2))) \\ _G. C. Greubel_, Jul 16 2018 %o A159948 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(44/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 16 2018 %Y A159948 Cf. A009967 (denominators). %K A159948 sign,frac %O A159948 0,2 %A A159948 _N. J. A. Sloane_, Nov 12 2009