This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159992 #13 Jul 31 2025 16:34:09 %S A159992 1,41,4927,49277,5913251,33262037,31931555539,127726222157, %T A159992 4598143997653,306542933176867,827665919577540943, %U A159992 49659955174652456593,744899327619786848909,1862248319049467122273,446939596571872109345521 %N A159992 Numerator of Sum_{k=0..n} A159990(k)/A159991(k). %C A159992 a(n)/A159993(n) approximates the positive root of x^3+2*x^2+10*x=20: %C A159992 A159994(n)/A159995(n) = f(a(n)/A159993(n)) --> 0, where f(x) = x^3 + 2*x^2 + 10*x - 20; %C A159992 a(n)/A159993(n) = a(n-1)/A159993(n-1) + A159990(n)/A159991(n). %C A159992 Limit can be found at A202300. - _Jason Bard_, Jul 26 2025 %H A159992 Reinhard Zumkeller, <a href="/A159992/b159992.txt">Table of n, a(n) for n = 0..30</a> %e A159992 a(0)/A159993(0) = 1; %e A159992 a(1)/A159993(1) = 41/30; %e A159992 a(2)/A159993(2) = 4927/3600; %e A159992 a(3)/A159993(3) = 49277/36000; %e A159992 a(4)/A159993(4) = 5913251/4320000; %e A159992 a(5)/A159993(5) = 33262037/24300000; %e A159992 a(6)/A159993(6) = 31931555539/23328000000; %e A159992 a(7)/A159993(7) = 127726222157/93312000000; %e A159992 a(8)/A159993(8) = 4598143997653/3359232000000; %e A159992 and written as decimal fractions: %e A159992 a(0)/A159993(0) = 1; %e A159992 a(1)/A159993(1) ~= 1.3666666666666667; %e A159992 a(2)/A159993(2) ~= 1.3686111111111111; %e A159992 a(3)/A159993(3) ~= 1.3688055555555556; %e A159992 a(4)/A159993(4) ~= 1.3688081018518519; %e A159992 a(5)/A159993(5) ~= 1.3688081069958847; %e A159992 a(6)/A159993(6) ~= 1.3688081078103566; %e A159992 a(7)/A159993(7) ~= 1.3688081078210733; %e A159992 a(8)/A159993(8) ~= 1.3688081078213710. %Y A159992 Cf. A159990, A159991, A159993 (denominator), A159994, A159995, A202300. %K A159992 frac,nonn %O A159992 0,2 %A A159992 _Reinhard Zumkeller_, May 01 2009