A160078 Positive integers which apparently never result in a palindrome under repeated applications of the function f(x) = x + (x with digits in binary expansion reversed). Binary analog of Lychrel numbers.
22, 26, 28, 35, 37, 41, 45, 46, 47, 49, 60, 61, 67, 75, 77, 78, 84, 86, 89, 90, 93, 94, 95, 97, 105, 106, 108, 110, 116, 120, 122, 124, 125, 131, 135, 139, 141, 147, 149, 152
Offset: 1
Examples
22 = 10110 10110 + 01101 = 100011 100011 + 110001 = 1010100... Not forming a palindrome after 1000 iterations.
Links
- Diofant.ru, Problem: binary Lychrel numbers under 1024. (Russian language!) [From Dremov Dmitry (dremovd(AT)gmail.com), May 03 2009]
Crossrefs
Binary version of A023108.
Programs
-
Python
from sympy.ntheory.digits import digits def make_int(l, b): return int(''.join(str(d) for d in l), b) maxn = 102 it = [] for i in range( 1, maxn ) : d = digits( i, 2 )[1:] isLychrel = True for j in range( 1000 ) : d = digits( make_int( d, 2 ) + make_int( d[::-1], 2 ), 2 )[1:] if d == d[::-1] : it.append( j + 1 ) isLychrel = False break if isLychrel : it.append( 0 ) print('Maximum iterations for non-seed numbers', max( it )) Lychrel = [] for i in range( len(it) ) : if it[i] == 0 : Lychrel.append( i + 1 ) print('Count of binary Lychrel numbers', len( Lychrel )) print('All binary lichler under', maxn) print('Decimal form', Lychrel) print('Binary form', list(map( lambda x: ''.join( map( str, toSystem( x, 2 ) ) ), Lychrel )))
Comments