cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160102 Multiplicative function, one-to-one and onto the squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 6, 11, 10, 13, 14, 17, 15, 19, 22, 21, 23, 29, 26, 31, 35, 33, 34, 37, 30, 41, 38, 39, 55, 43, 42, 47, 46, 51, 58, 77, 65, 53, 62, 57, 70, 59, 66, 61, 85, 91, 74, 67, 69, 71, 82, 87, 95, 73, 78, 119, 110, 93, 86, 79, 105, 83, 94, 143, 115, 133, 102, 89, 145
Offset: 1

Views

Author

Keywords

Comments

Multiplicative with a(A050376(m)) = Prime(m) = A000040(m). If k = 2^{i_1} + ... + 2^{i_j} is the binary representation of k, a(p^k) = a(p^2^{i_1}) * ... * a(p^2^{i_j}). [edited by Peter Munn, Jan 07 2020]
Equivalently, a(A050376(m)) = A000040(m); a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Dec 30 2019

Crossrefs

Sequences used in definitions of this sequence: A000040, A019565, A050376, A052331, A059897.
Cf. A005117 (range of values), A052330.

Programs

  • PARI
    al(n)={local(v,k,fm,m,p);
    v=vector(n);v[1]=1;p=1;
    for(k=2,n,fm=factor(k);
    if(matsize(fm)[1]>1,m=fm[1,1]^fm[1,2];v[k]=v[m]*v[k/m],
    m=2^valuation(fm[1,2],2);
    if(m==fm[1,2],p=nextprime(p+1);v[k]=p,
    m=fm[1,1]^m;v[k]=v[m]*v[k/m])));
    v}

Formula

From Peter Munn, Dec 30 2019: (Start)
a(n) = A019565(A052331(n)).
a(A052330(k)) = A019565(k).
(End)