This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160104 #11 Sep 08 2022 08:45:44 %S A160104 1,10,-1358,-42740,5512492,304384600,-37142220680,-3034178687600, %T A160104 348731717384080,38877977386007200,-4187277821653825760, %U A160104 -608713688504523233600,61068424818638825202880,11260738942261526747094400,-1044883534589865025424443520 %N A160104 Numerator of Hermite(n, 5/27). %H A160104 G. C. Greubel, <a href="/A160104/b160104.txt">Table of n, a(n) for n = 0..376</a> %F A160104 From _G. C. Greubel_, Jul 12 2018: (Start) %F A160104 a(n) = 27^n * Hermite(n, 5/27). %F A160104 E.g.f.: exp(10*x - 729*x^2). %F A160104 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/27)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160104 Numerators of 1, 10/27, -1358/729, -42740/19683, 5512492/531441.. %t A160104 Numerator[Table[HermiteH[n, 5/27], {n, 0, 30}]] (* or *) Table[27^n* HermiteH[n, 5/27], {n,0,30}] (* _G. C. Greubel_, Jul 12 2018 *) %o A160104 (PARI) a(n)=numerator(polhermite(n,5/27)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160104 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(10/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 12 2018 %Y A160104 Cf. A009971 (denominators). %K A160104 sign,frac %O A160104 0,2 %A A160104 _N. J. A. Sloane_, Nov 12 2009