This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160107 #15 Sep 08 2022 08:45:44 %S A160107 1,14,-1262,-58492,4701100,406940744,-28573848584,-3959951508688, %T A160107 236185377526672,49495469682710240,-2406287948347046624, %U A160107 -755331979250773951936,28017398406079098428608,13607531886656648441072768,-340536322975630153440817280 %N A160107 Numerator of Hermite(n, 7/27). %H A160107 G. C. Greubel, <a href="/A160107/b160107.txt">Table of n, a(n) for n = 0..376</a> %F A160107 From _G. C. Greubel_, Sep 24 2018: (Start) %F A160107 a(n) = 27^n * Hermite(n, 7/27). %F A160107 E.g.f.: exp(14*x - 729*x^2). %F A160107 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/27)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160107 Numerators of 1, 14/27, -1262/729, -58492/19683, 4701100/531441, ... %t A160107 HermiteH[Range[0,20],7/27]//Numerator (* _Harvey P. Dale_, Jun 08 2018 *) %t A160107 Table[27^n*HermiteH[n, 7/27], {n, 0, 30}] (* _G. C. Greubel_, Sep 24 2018 *) %o A160107 (PARI) a(n)=numerator(polhermite(n, 7/27)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160107 (PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 729*x^2))) \\ _G. C. Greubel_, Sep 24 2018 %o A160107 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 24 2018 %Y A160107 Cf. A009971 (denominators). %K A160107 sign,frac %O A160107 0,2 %A A160107 _N. J. A. Sloane_, Nov 12 2009