A160119 A three-dimensional version of the cellular automaton A160118, using cubes.
0, 1, 27, 35, 235, 243, 443, 499, 1899, 1907, 2107, 2163, 3563, 3619, 5019, 5411, 15211, 15219, 15419, 15475, 16875, 16931, 18331, 18723, 28523, 28579, 29979, 30371, 40171, 40563, 50363, 53107, 121707, 121715, 121915, 121971, 123371, 123427, 124827, 125219, 135019
Offset: 0
Keywords
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS.
- Index entries for sequences related to cellular automata.
Programs
-
Mathematica
With[{d = 3}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)
Formula
From Nathaniel Johnston, Mar 24 2011: (Start)
In general, a d-dimensional version of the cellular automaton A160118 has its cell count given by the following formulas (where wt(k) = A000120(k)):
a(2n-1) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-2}(2^d-1)^(wt(k)-1), n >= 2.
a(2n) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1), n >= 1. (End)
Extensions
More terms from Omar E. Pol, May 11 2009
Edited by N. J. A. Sloane, Sep 05 2009
a(8)-a(32) from Nathaniel Johnston, Mar 24 2011
More terms from Amiram Eldar, Aug 01 2023
Comments