cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160124 Total number of squares and rectangles after n stages in the toothpick structure of A139250.

Original entry on oeis.org

0, 0, 0, 2, 4, 4, 8, 18, 24, 24, 28, 36, 40, 44, 64, 94, 108, 108, 112, 120, 124, 128, 148, 176, 188, 192, 208, 228, 240, 268, 340, 418, 448, 448, 452, 460, 464, 468, 488, 516, 528, 532, 548, 568, 580, 608, 680, 756, 784, 788, 804, 824, 836, 864, 932, 1000, 1028
Offset: 0

Views

Author

Omar E. Pol, May 03 2009

Keywords

Comments

From Omar E. Pol, Sep 16 2012: (Start)
It appears that A147614(n)/a(n) converge to 2.
It appears that A139250(n)/a(n) converge to 3/2.
It appears that a(n)/A139252(n) converge to 2.
(End)
Also 0 together with the rows sums of A211008. - Omar E. Pol, Sep 24 2012

Crossrefs

Programs

  • Mathematica
    w [n_] := w[n] = Module[{k, i}, Which[n == 0, 0, n <= 3, n - 1, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^(k - 1) - 1, i < 2^k - 2, 2 w[i] + w[i + 1], i == 2^k - 2, 2 w[i] + w[i + 1] + 1, True, 2 w[i] + w[i + 1] + 2]]];
    r[n_] := r[n] = Module[{k, i}, Which[n <= 2, 0, n <= 4, 2, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^k - 2, i <= 2^k - 2, 4 w[i], True, 4 w[i] + 2]]];
    Join[{0}, Array[r, 100]] // Accumulate (* Jean-François Alcover, Apr 15 2020, after Maple code in A160125 *)

Formula

See A160125 for a recurrence. - N. J. A. Sloane, Feb 03 2010
a(n) = 1+2*A139250(n)-A147614(n), n>0 (Euler's formula). [From R. J. Mathar, Jan 22 2010]
a(n) = A187220(n+1) - A147614(n), n>0. - Omar E. Pol, Feb 15 2013

Extensions

More terms from R. J. Mathar, Jan 21 2010