A160124 Total number of squares and rectangles after n stages in the toothpick structure of A139250.
0, 0, 0, 2, 4, 4, 8, 18, 24, 24, 28, 36, 40, 44, 64, 94, 108, 108, 112, 120, 124, 128, 148, 176, 188, 192, 208, 228, 240, 268, 340, 418, 448, 448, 452, 460, 464, 468, 488, 516, 528, 532, 548, 568, 580, 608, 680, 756, 784, 788, 804, 824, 836, 864, 932, 1000, 1028
Offset: 0
Keywords
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Brian Hayes, Joshua Trees and Toothpicks
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
Programs
-
Mathematica
w [n_] := w[n] = Module[{k, i}, Which[n == 0, 0, n <= 3, n - 1, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^(k - 1) - 1, i < 2^k - 2, 2 w[i] + w[i + 1], i == 2^k - 2, 2 w[i] + w[i + 1] + 1, True, 2 w[i] + w[i + 1] + 2]]]; r[n_] := r[n] = Module[{k, i}, Which[n <= 2, 0, n <= 4, 2, True, k = Floor[Log[2, n]]; i = n - 2^k; Which[i == 0, 2^k - 2, i <= 2^k - 2, 4 w[i], True, 4 w[i] + 2]]]; Join[{0}, Array[r, 100]] // Accumulate (* Jean-François Alcover, Apr 15 2020, after Maple code in A160125 *)
Formula
See A160125 for a recurrence. - N. J. A. Sloane, Feb 03 2010
Extensions
More terms from R. J. Mathar, Jan 21 2010
Comments