This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160131 #13 Sep 08 2022 08:45:44 %S A160131 1,16,-1202,-65888,4203340,451512256,-23418152504,-4324519655552, %T A160131 169813349966992,53158210861830400,-1377759404477582624, %U A160131 -797090864837128553984,9343051491617413259968,14095390595056279792663552,48438051548784025753183360,-286940104001508238715797489664 %N A160131 Numerator of Hermite(n, 8/27). %H A160131 G. C. Greubel, <a href="/A160131/b160131.txt">Table of n, a(n) for n = 0..376</a> %F A160131 From _G. C. Greubel_, Sep 24 2018: (Start) %F A160131 a(n) = 27^n * Hermite(n, 8/27). %F A160131 E.g.f.: exp(16*x - 729*x^2). %F A160131 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/27)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160131 Numerators of 1, 16/27, -1202/729, -65888/19683, 4203340/531441, ... %t A160131 Table[27^n*HermiteH[n, 8/27], {n, 0, 30}] (* _G. C. Greubel_, Sep 24 2018 *) %o A160131 (PARI) a(n)=numerator(polhermite(n, 8/27)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160131 (PARI) x='x+O('x^30); Vec(serlaplace(exp(16*x - 729*x^2))) \\ _G. C. Greubel_, Sep 24 2018 %o A160131 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 24 2018 %Y A160131 Cf. A009971 (denominators). %K A160131 sign,frac %O A160131 0,2 %A A160131 _N. J. A. Sloane_, Nov 12 2009