This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160139 #15 Sep 08 2022 08:45:44 %S A160139 1,22,-974,-85580,2377516,551407912,-5201117576,-4938141000848, %T A160139 -55556496038000,56376233721055072,1969289482873847584, %U A160139 -778641119029758302912,-48713569344985450216256,12551406492954971362990720,1199447936209863593384712064 %N A160139 Numerator of Hermite(n, 11/27). %H A160139 G. C. Greubel, <a href="/A160139/b160139.txt">Table of n, a(n) for n = 0..376</a> %F A160139 From _G. C. Greubel_, Sep 24 2018: (Start) %F A160139 a(n) = 27^n * Hermite(n, 11/27). %F A160139 E.g.f.: exp(22*x - 729*x^2). %F A160139 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/27)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160139 Numerators of 1, 22/27, -974/729, -85580/19683, 2377516/531441, ... %t A160139 Numerator[HermiteH[Range[0,20],11/27]] (* _Harvey P. Dale_, Mar 06 2014 *) %t A160139 Table[27^n*HermiteH[n, 11/27], {n, 0, 30}] (* _G. C. Greubel_, Sep 24 2018 *) %o A160139 (PARI) a(n)=numerator(polhermite(n, 11/27)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160139 (PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - 729*x^2))) \\ _G. C. Greubel_, Sep 24 2018 %o A160139 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 24 2018 %Y A160139 Cf. A009971 (denominators) %K A160139 sign,frac %O A160139 0,2 %A A160139 _N. J. A. Sloane_, Nov 12 2009