This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160141 #13 Sep 08 2022 08:45:44 %S A160141 1,28,-674,-100520,133516,589971088,15545858824,-4725783030752, %T A160141 -290982960018800,46974010390164928,5133550692291311584, %U A160141 -541141652104447925888,-97483852261892597109056,6738266481886428192282880,2036380397264732274988968064,-80522844304853268561187040768 %N A160141 Numerator of Hermite(n, 14/27). %H A160141 G. C. Greubel, <a href="/A160141/b160141.txt">Table of n, a(n) for n = 0..376</a> %F A160141 From _G. C. Greubel_, Sep 24 2018: (Start) %F A160141 a(n) = 27^n * Hermite(n, 14/27). %F A160141 E.g.f.: exp(28*x - 729*x^2). %F A160141 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/27)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160141 Numerators of 1, 28/27, -674/729, -100520/19683, 133516/531441, ... %t A160141 Table[27^n*HermiteH[n, 14/27], {n, 0, 30}] (* _G. C. Greubel_, Sep 24 2018 *) %o A160141 (PARI) a(n)=numerator(polhermite(n, 14/27)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160141 (PARI) x='x+O('x^30); Vec(serlaplace(exp(28*x - 729*x^2))) \\ _G. C. Greubel_, Sep 24 2018 %o A160141 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 24 2018 %Y A160141 Cf. A009971 (denominators). %K A160141 sign,frac %O A160141 0,2 %A A160141 _N. J. A. Sloane_, Nov 12 2009