A160160 Toothpick sequence in the three-dimensional grid.
0, 1, 3, 7, 15, 23, 31, 39, 55, 87, 143, 175, 191, 199, 215, 247, 303, 359, 423, 503, 655, 887, 1239, 1383, 1431, 1463, 1487, 1527, 1583, 1639, 1703, 1783, 1935, 2167, 2519, 2735, 2903, 3079, 3351, 3711, 4207, 4655, 5191, 5855, 7023, 8511, 10511, 11279, 11583, 11919, 12183, 12375, 12487, 12607
Offset: 0
Links
- M. F. Hasler, Table of n, a(n) for n = 0..500
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- R. J. Mathar, C++ program
- R. J. Mathar, View after stage 1
- R. J. Mathar, View after stage 2
- R. J. Mathar, View after stage 3
- R. J. Mathar, View after stage 4
- R. J. Mathar, View after stage 5
- R. J. Mathar, View after stage 6
- R. J. Mathar, View after stage 7
- R. J. Mathar, View after stage 8
- R. J. Mathar, View after stage 9
- R. J. Mathar, View after stage 10
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Alex van den Brandhof and Paul Levrie, Tandenstokerrij, Pythagoras, Viskundetijdschrift voor Jongeren, 55ste Jaargang, Nummer 6, Juni 2016, (see page 19 and the back cover).
Programs
-
PARI
A160160_vec(n,o=1)={local(s(U)=[Vecsmall(Vec(V)+U)|V<-E], E=[Vecsmall([1,1,1])], J=[], M,A,B,U); [if(i>4, M+=8*#E=setminus(setunion(A=s(U=matid(3)[i%3+1,]), B=select(vecmin,s(-U))), J=setunion(setunion(setintersect(A,B),E),J)),M=1<
M. F. Hasler, Dec 11 2018 -
PARI
A160160(n)=sum(k=1,n,A160161[k]) \\ if A160161=A160161_vec(n) has already been computed. - M. F. Hasler, Dec 12 2018
Formula
Partial sums of A160161: a(n) = Sum_{1 <= k <= n} A160161(k) for all n >= 0. - M. F. Hasler, Dec 12 2018
Extensions
Edited by N. J. A. Sloane, Jan 02 2009
Extended to a(76) with C++ program and illustrations by R. J. Mathar, Jan 09 2010
Extended to 500 terms by M. F. Hasler, Dec 12 2018
Comments