This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160161 #36 Feb 24 2021 02:48:18 %S A160161 0,1,2,4,8,8,8,8,16,32,56,32,16,8,16,32,56,56,64,80,152,232,352,144, %T A160161 48,32,24,40,56,56,64,80,152,232,352,216,168,176,272,360,496,448,536, %U A160161 664,1168,1488,2000,768,304,336,264,192,112,120,128,112,168,240,352,216,168,176,272,360,496 %N A160161 First differences of the 3D toothpick numbers A160160. %C A160161 Number of toothpicks added at n-th stage to the three-dimensional toothpick structure of A160160. %C A160161 The sequence should start with a(1) = 1 = A160160(1) - A160160(0), the initial a(0) = 0 seems purely conventional and not given in terms of A160160. The sequence can be written as a table with rows r >= 0 of length 1, 1, 1, 3, 9, 18, 36, ... = 9*2^(r-4) for row r >= 4. In that case, rows 0..3 are filled with 2^r, and all rows r >= 3 have the form (x_r, y_r, x_r) where x_r and y_r have 3*2^(r-4) elements, all multiples of 8. Moreover, y_r[1] = a(A033484(r-2)) = x_{r+1}[1] = a(A176449(r-3)) is the largest element of row r and thus a record value of the sequence. - _M. F. Hasler_, Dec 11 2018 %H A160161 M. F. Hasler, <a href="/A160161/b160161.txt">Table of n, a(n) for n = 0..500</a> %H A160161 David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.] %H A160161 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A160161 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A160161 a(9*2^k - m) = a(6*2^k - m) for all k >= 0 and 2 <= m <= 3*2^(k-1) + 2. - _M. F. Hasler_, Dec 12 2018 %e A160161 Array begins: %e A160161 =================== %e A160161 x y z %e A160161 =================== %e A160161 0 1 %e A160161 2 4 8 %e A160161 8 8 8 %e A160161 16 32 56 %e A160161 32 16 8 %e A160161 16 32 56 %e A160161 56 64 80 %e A160161 152 232 352 %e A160161 144 48 32 %e A160161 ... %e A160161 From _Omar E. Pol_, Feb 28 2018: (Start) %e A160161 Also, starting with 1, the sequence can be written as an irregular triangle in which the row lengths are the terms of A011782 multiplied by 3, as shown below: %e A160161 1, 2, 4; %e A160161 8, 8, 8; %e A160161 8, 16, 32, 56, 32, 16; %e A160161 8, 16, 32, 56, 56, 64, 80, 152, 232, 352, 144, 48; %e A160161 32, 24, 40, 56, 56, 64, 80, 152, 232, 352, 216, 168, 176, 272, 360, 496, 448, ... %e A160161 (End) %e A160161 If one starts rows with a(A176449(k) = 9*2^k-2), they are of the form A_k, B_k, A_k where A_k and B_k have 3*2^k elements and the first element of A_k is the first element of B_{k-1} and the largest of that (previous) row: %e A160161 k | a(9*2^k-2, ...) = A_k ; B_k ; A_k %e A160161 ---+------------------------------------- %e A160161 | a( 1 .. 6) = (1, 2, 4, 8, 8, 8) (One might consider a row (8 ; 8 ; 8).) %e A160161 0 | a( 7, ...) = (8, 16, 32 ; 56, 32, 16 ; 8, 16, 32) %e A160161 1 | a(16, ...) = (56, 56, 64, 80, 152, 232 ; 352, 144, 48, 32, 24, 40 ; %e A160161 | 56, 56, 64, 80, 152, 232) %e A160161 2 | a(34, ...) = (352, 216, 168, 176, 272, 360, 496, 448, 536, 664, 1168, 1488 ; %e A160161 | 2000, 768, 304, 336, 264, 192, 112, 120, 128, 112, 168, 240 ; %e A160161 | 352, 216, 168, 176, 272, 360, 496, 448, 536, 664, 1168, 1488) %e A160161 3 | a(70, ...) = (2000, 984, ... ; 10576, 4304, ... ; 2000, 984, ...) %e A160161 4 | a(142, ...) = (10576, 5016, ... ; 54328, 24120, ...; 10576, 5016, ...) %e A160161 etc. - _M. F. Hasler_, Dec 11 2018 %o A160161 (PARI) A160161_vec(n)=(n=A160160_vec(n))-concat(0,n[^-1]) \\ _M. F. Hasler_, Dec 11 2018 %o A160161 (PARI) A160161_vec(n)={local(E=[Vecsmall([1,1,1])], s(U)=[Vecsmall(Vec(V)+U)|V<-E], J=[], M, A, B, U); [if(i>4,8*#E=setminus(setunion(A=s(U=matid(3)[i%3+1,]), B=select(vecmin,s(-U))), J=setunion(setunion(setintersect(A, B), E), J)),2^(i-1))|i<-[1..n]]} \\ Returns the vector a(1..n). (A160160 is actually given as partial sums of this sequence, rather than the converse.) - _M. F. Hasler_, Dec 12 2018 %Y A160161 Cf. A160160, A139250, A139251, A160120, A160121, A160171, A170875. %K A160161 nonn,tabf %O A160161 0,3 %A A160161 _Omar E. Pol_, May 03 2009 %E A160161 Extended to 78 terms with C++ program by _R. J. Mathar_, Jan 09 2010 %E A160161 Edited and extended by _M. F. Hasler_, Dec 11 2018