This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160185 #24 Aug 03 2019 17:58:51 %S A160185 1,2,1,5,3,1,15,9,4,1,52,31,14,5,1,203,121,54,20,6,1,877,523,233,85, %T A160185 27,7,1,4140,2469,1101,400,125,35,8,1,21147,12611,5625,2046,635,175, %U A160185 44,9,1,115975,69161,30846,11226,3488,952,236,54,10,1 %N A160185 Triangle read by rows, (1 / ((-1)*A129184 * A007318 + I)) - I, I = Identity matrix. %C A160185 Inverse binomial transform of the triangle shifts to left (= adding I as right border, I = Identity matrix); resulting in reversed rows of A121207. %C A160185 Left border = Bell numbers, A000110 = eigensequence of Pascal's triangle. %C A160185 Successive columns from left to right = eigensequences of Pascal's triangle deleting columns one at a time. %C A160185 Row sums of the triangle = A060719: (1, 3, 9, 29, 103, ...). - _Gary W. Adamson_, May 20 2013 %C A160185 From _Gary W. Adamson_, Jul 18 2019: (Start) %C A160185 Rows are eigensequences of triangles exemplified by the following arrangement of binomial sequences. Example: row 5 is (1, 5, 14, 31, 52, 0, 0, 0, ...), the eigensequence of: %C A160185 1; %C A160185 4, 1; %C A160185 6, 3, 1; %C A160185 4, 3, 2, 1; %C A160185 1, 1, 1, 1, 1; %C A160185 ... and the rest zeros. %C A160185 Similarly, the production matrix for (1, 6, 20, 54, 121, 203, 0, 0, 0, ...) is: %C A160185 1; %C A160185 5, 1; %C A160185 10, 4, 1; %C A160185 10, 6, 3, 1; %C A160185 5, 4, 3, 2, 1; %C A160185 1, 1, 1, 1, 1, 1; %C A160185 ... and the rest zeros. (End) %F A160185 Triangle read by rows, 1 / ((-1)*A129184 * A051731 + I), I = Identity matrix. %F A160185 Equals reversal by rows of triangle A121207, then delete right border. A121207 begins: 1; 1, 1; 1, 1, 2 1, 1, 3, 5; ... %e A160185 First few rows of the triangle: %e A160185 1; %e A160185 2, 1; %e A160185 5, 3, 1; %e A160185 15, 9, 4, 1; %e A160185 52, 31, 14, 5, 1; %e A160185 203, 121, 54, 20, 6, 1; %e A160185 877, 523, 233, 85, 27, 7, 1; %e A160185 4140, 2469, 1101, 400, 125, 35, 8, 1; %e A160185 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1; %e A160185 115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1; %e A160185 ... %Y A160185 Cf. A121207, A124496, A186020. %Y A160185 Cf. A060719. %K A160185 nonn,tabl %O A160185 0,2 %A A160185 _Gary W. Adamson_, May 03 2009 %E A160185 Corrected by _Alois P. Heinz_, Apr 18 2013