This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160196 #13 Sep 08 2022 08:45:44 %S A160196 1,13,-223,-13091,92065,21723533,101958529,-49768288739,-926761957183, %T A160196 144025448042125,5141947009489249,-497734445201769763, %U A160196 -28642623292540648607,1968988727426096533261,171559661755326400233665,-8575534533295174571498723,-1120252760054156502803433599 %N A160196 Numerator of Hermite(n, 13/28). %H A160196 G. C. Greubel, <a href="/A160196/b160196.txt">Table of n, a(n) for n = 0..417</a> %F A160196 From _G. C. Greubel_, Sep 25 2018: (Start) %F A160196 a(n) = 14^n * Hermite(n, 13/28). %F A160196 E.g.f.: exp(13*x - 196*x^2). %F A160196 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/14)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160196 Numerators of 1, 13/14, -223/196, -13091/2744, 92065/38416, ... %t A160196 Table[14^n*HermiteH[n, 13/28], {n, 0, 30}] (* _G. C. Greubel_, Sep 25 2018 *) %o A160196 (PARI) a(n)=numerator(polhermite(n, 13/28)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160196 (PARI) x='x+O('x^30); Vec(serlaplace(exp(13*x - 196*x^2))) \\ _G. C. Greubel_, Sep 25 2018 %o A160196 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(13/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 25 2018 %Y A160196 Cf. A001023 (denominators). %K A160196 sign,frac %O A160196 0,2 %A A160196 _N. J. A. Sloane_, Nov 12 2009