This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160203 #2 Mar 30 2012 17:28:01 %S A160203 641,809,1105,2741,4045,5989,15805,23461,34829,92089,136721,202985, %T A160203 536729,796865,1183081,3128285,4644469,6895501,18232981,27069949, %U A160203 40189925,106269601,157775225,234244049,619384625,919581401,1365274369 %N A160203 Positive numbers y such that y^2 is of the form x^2+(x+809)^2 with integer x. %C A160203 (-200, a(1)) and (A123654(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+809)^2 = y^2. %C A160203 lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2). %C A160203 lim_{n -> infinity} a(n)/a(n-1) = (873+232*sqrt(2))/809 for n mod 3 = {0, 2}. %C A160203 lim_{n -> infinity} a(n)/a(n-1) = (989043+524338*sqrt(2))/809^2 for n mod 3 = 1. %F A160203 a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=641, a(2)=809, a(3)=1105, a(4)=2741, a(5)=4045, a(6)=5989. %F A160203 G.f.: (1-x)*(641+1450*x+2555*x^2+1450*x^3+641*x^4) / (1-6*x^3+x^6). %F A160203 a(3*k-1) = 809*A001653(k) for k >= 1. %e A160203 (-200, a(1)) = (-200, 641) is a solution: (-200)^2+(-200+809)^2 = 40000+370881 = 410881 = 641^2. %e A160203 (A123654(1), a(2)) = (0, 809) is a solution: 0^2+(0+809)^2 = 654481 = 809^2. %e A160203 (A123654(3), a(4)) = (1491, 2741) is a solution: 1491^2+(1491+809)^2 = 2223081+5290000 = 7513081 = 2741^2. %o A160203 (PARI) {forstep(n=-200, 10000000, [3, 1], if(issquare(2*n^2+1618*n+654481, &k), print1(k, ",")))} %Y A160203 Cf. A123654, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160204 (decimal expansion of (873+232*sqrt(2))/809), A160205 (decimal expansion of (989043+524338*sqrt(2))/809^2). %K A160203 nonn %O A160203 1,1 %A A160203 _Klaus Brockhaus_, May 18 2009