This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160209 #4 Dec 25 2017 14:19:58 %S A160209 673,937,1685,2353,4685,9437,13445,27173,54937,78317,158353,320185, %T A160209 456457,922945,1866173,2660425,5379317,10876853,15506093,31352957, %U A160209 63394945,90376133,182738425,369492817,526750705,1065077593,2153561957 %N A160209 Positive numbers y such that y^2 is of the form x^2+(x+937)^2 with integer x. %C A160209 (-385, a(1)) and (A129974(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+937)^2 = y^2. %C A160209 lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2). %C A160209 lim_{n -> infinity} a(n)/a(n-1) = (1179+506*sqrt(2))/937 for n mod 3 = {0, 2}. %C A160209 lim_{n -> infinity} a(n)/a(n-1) = (933747+224782*sqrt(2))/937^2 for n mod 3 = 1. %H A160209 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1). %F A160209 a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=673, a(2)=937, a(3)=1685, a(4)=2353, a(5)=4685, a(6)=9437. %F A160209 G.f.: (1-x)*(673+1610*x+3295*x^2+1610*x^3+673*x^4) / (1-6*x^3+x^6). %F A160209 a(3*k-1) = 937*A001653(k) for k >= 1. %e A160209 (-385, a(1)) = (-385, 673) is a solution: (-385)^2+(-385+937)^2 = 148225+304704 = 452929 = 673^2. %e A160209 (A129974(1), a(2)) = (0, 937) is a solution: 0^2+(0+937)^2 = 877969 = 937^2. %e A160209 (A129974(3), a(4)) = (1128, 2353) is a solution: 1128^2+(1128+937)^2 = 1272384+4264225 = 5536609 = 2353^2. %t A160209 LinearRecurrence[{0,0,6,0,0,-1},{673,937,1685,2353,4685,9437},30] (* _Harvey P. Dale_, Dec 25 2017 *) %o A160209 (PARI) {forstep(n=-388, 10000000, [3, 1], if(issquare(2*n^2+1874*n+877969, &k), print1(k, ",")))} %Y A160209 Cf. A129974, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160210 (decimal expansion of (1179+506*sqrt(2))/937), A160211 (decimal expansion of (933747+224782*sqrt(2))/937^2). %K A160209 nonn %O A160209 1,1 %A A160209 _Klaus Brockhaus_, May 18 2009