This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160219 #13 Sep 08 2022 08:45:44 %S A160219 1,17,-103,-15079,-135215,21345217,627890089,-39529818871, %T A160219 -2394937325023,83251577454065,9864615699400249,-158647716730130567, %U A160219 -45233234080226093327,-22686119865309399391,230122896835121911804745,4036590672017890484538473 %N A160219 Numerator of Hermite(n, 17/28). %H A160219 G. C. Greubel, <a href="/A160219/b160219.txt">Table of n, a(n) for n = 0..417</a> %F A160219 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160219 a(n) = 14^n * Hermite(n, 17/28). %F A160219 E.g.f.: exp(17*x - 196*x^2). %F A160219 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/14)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160219 Numerators of 1, 17/14, -103/196, -15079/2744, -135215/38416 %t A160219 Numerator[Table[HermiteH[n, 17/28], {n, 0, 50}]] (* _G. C. Greubel_, Sep 26 2018 *) %o A160219 (PARI) a(n)=numerator(polhermite(n, 17/28)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160219 (PARI) x='x+O('x^30); Vec(serlaplace(exp(17*x - 196*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160219 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(17/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160219 Cf. A001023 (denominators) %K A160219 sign,frac %O A160219 0,2 %A A160219 _N. J. A. Sloane_, Nov 12 2009