This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160221 #11 Sep 08 2022 08:45:45 %S A160221 1,23,137,-14881,-503375,11755783,1256998009,1261352591, %T A160221 -3420191427103,-82620004548745,10166175250198249,557692448585640127, %U A160221 -31009621361385126767,-3336606569458709073049,81283079360068297324505,20180807678470966231356527,-13785930032369364946889279 %N A160221 Numerator of Hermite(n, 23/28). %H A160221 G. C. Greubel, <a href="/A160221/b160221.txt">Table of n, a(n) for n = 0..417</a> %F A160221 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160221 a(n) = 14^n * Hermite(n, 23/28). %F A160221 E.g.f.: exp(23*x - 196*x^2). %F A160221 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(23/14)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160221 Numerators of 1, 23/14, 137/196, -14881/2744, -503375/38416 %t A160221 Table[14^n*HermiteH[n, 23/28], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *) %o A160221 (PARI) a(n)=numerator(polhermite(n, 23/28)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160221 (PARI) x='x+O('x^30); Vec(serlaplace(exp(23*x - 196*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160221 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(23/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160221 Cf. A001023 (denominators). %K A160221 sign,frac %O A160221 0,2 %A A160221 _N. J. A. Sloane_, Nov 12 2009