This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160225 #19 Sep 08 2022 08:45:45 %S A160225 1,4,-1666,-20120,8326156,168671984,-69348284024,-1979630798624, %T A160225 808588172904080,29872264717900864,-12120918702550359584, %U A160225 -550935167365293970816,222057497165125577139904,12008305406761595815509760,-4807476011385589486479101824 %N A160225 Numerator of Hermite(n, 2/29). %H A160225 Vincenzo Librandi, <a href="/A160225/b160225.txt">Table of n, a(n) for n = 0..100</a> %F A160225 From _G. C. Greubel_, Jul 12 2018: (Start) %F A160225 a(n) = 29^n * Hermite(n, 2/29). %F A160225 E.g.f.: exp(4*x - 841*x^2). %F A160225 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160225 Numerators of 1, 4/29, -1666/841, -20120/24389, 8326156/707281 %t A160225 Table[Numerator[HermiteH[n, 2/29]], {n, 0, 15}] (* _Wesley Ivan Hurt_, Feb 25 2014 *) %t A160225 Table[29^n*HermiteH[n, 2/29], {n,0,30}] (* _G. C. Greubel_, Jul 12 2018~ *) %o A160225 (PARI) a(n)=numerator(polhermite(n,2/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160225 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 12 2018 %Y A160225 Cf. A009973 (denominators). %K A160225 sign,frac %O A160225 0,2 %A A160225 _N. J. A. Sloane_, Nov 12 2009