This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160231 #15 Sep 08 2022 08:45:45 %S A160231 1,8,-1618,-39856,7845580,330915808,-63334001336,-3846274345024, %T A160231 714924336969872,57474862282401920,-10362725714790706976, %U A160231 -1049628989308325950208,183334119260591052868288,22652384474283979401944576,-3827564775957812126802428800 %N A160231 Numerator of Hermite(n, 4/29). %H A160231 G. C. Greubel, <a href="/A160231/b160231.txt">Table of n, a(n) for n = 0..371</a> %F A160231 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160231 a(n) = 29^n * Hermite(n, 4/29). %F A160231 E.g.f.: exp(8*x - 841*x^2). %F A160231 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160231 Numerators of 1, 8/29, -1618/841, -39856/24389, 7845580/707281. %t A160231 Table[Numerator[HermiteH[n, 4/29]], {n, 0, 15}] (* _Wesley Ivan Hurt_, Jun 06 2014 *) %t A160231 Table[29^n*HermiteH[n, 4/29], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *) %o A160231 (PARI) a(n)=numerator(polhermite(n, 4/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160231 (PARI) x='x+O('x^30); Vec(serlaplace(exp(8*x - 841*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160231 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160231 Cf. A009973 (denominators). %K A160231 sign,frac %O A160231 0,2 %A A160231 _N. J. A. Sloane_, Nov 12 2009