cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160232 Array read by antidiagonals: row n has g.f. ((1-x)/(1-2x))^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 8, 1, 5, 14, 25, 28, 16, 1, 6, 20, 44, 66, 64, 32, 1, 7, 27, 70, 129, 168, 144, 64, 1, 8, 35, 104, 225, 360, 416, 320, 128, 1, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 1, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512, 1, 11, 65
Offset: 1

Views

Author

N. J. A. Sloane, May 15 2010

Keywords

Comments

Suggested by a question from Phyllis Chinn (Humboldt State University).
As triangle, mirror image of A105306. - Philippe Deléham, Nov 01 2011
A160232 is jointly generated with A208341 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + 2x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Subtriangle of the triangle T(n,k) given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012

Examples

			Array begins:
  1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, ...
  1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632, 147456, 311296, 655360, 1376256, ...
  1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, 13056, 29952, 68096, 153600, 344064, 765952, 1695744, 3735552, ...
  1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, 39680, 96256, 230656, 546816, 1284096, 2990080, 6909952, ...
  1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, 102592, 261760, 657920, 1632000, 4001280, 9708544, ...
  1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, ...
From _Clark Kimberling_, Feb 25 2012: (Start)
As a triangle (see Comments):
  1;
  1,  1;
  1,  2,  2;
  1,  3,  5,  4;
  1,  4,  9, 12,  8;  (End)
From _Philippe Deléham_, Mar 08 2012: (Start)
(1, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  2,  0;
  1,  3,  5,  4,  0;
  1,  4,  9, 12,  8,  0;
  1,  5, 14, 25, 28, 16,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A160232 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208341 *)
    (* Clark Kimberling, Feb 25 2012 *)

Formula

From Philippe Deléham, Mar 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-2*y*x)/(1-2*y*x-x+y*x^2).
Sum_{k=0..n, n>0} T(n,k)*x^k = A000012(n), A001519(n), A052984(n-1) for x = 0, 1, 2 respectively. (End)