cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160237 Numerator of Hermite(n, 6/29).

This page as a plain text file.
%I A160237 #11 Sep 08 2022 08:45:45
%S A160237 1,12,-1538,-58824,7054860,480426192,-53566258296,-5491256229216,
%T A160237 564794050426512,80667872425448640,-7581837866251154976,
%U A160237 -1447815668591059984512,122905376178286149551808,30697575968981388522011904,-2319078043886628283835690880
%N A160237 Numerator of Hermite(n, 6/29).
%H A160237 G. C. Greubel, <a href="/A160237/b160237.txt">Table of n, a(n) for n = 0..371</a>
%F A160237 From _G. C. Greubel_, Sep 26 2018: (Start)
%F A160237 a(n) = 29^n * Hermite(n, 6/29).
%F A160237 E.g.f.: exp(12*x - 841*x^2).
%F A160237 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
%e A160237 Numerators of 1, 12/29, -1538/841, -58824/24389, 7054860/707281,...
%t A160237 Table[29^n*HermiteH[n, 6/29], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *)
%o A160237 (PARI) a(n)=numerator(polhermite(n, 6/29)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A160237 (PARI) x='x+O('x^30); Vec(serlaplace(exp(12*x - 841*x^2))) \\ _G. C. Greubel_, Sep 26 2018
%o A160237 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018
%Y A160237 Cf. A009973 (denominators).
%K A160237 sign,frac
%O A160237 0,2
%A A160237 _N. J. A. Sloane_, Nov 12 2009