cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160242 Triangle A(n,m) read by rows: a quarter of the Fourier coefficient [cos(m*t)] of the shifted Boubaker polynomial B_n(2*cos t)-2*cos(n*t).

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Haydar Rahmanov, May 05 2009

Keywords

Comments

Starting from the polynomials B_n(x) defined in A137276 and A135929, we insert x=2*cos(t), and define the Fourier coefficients A(n,m) by B_n(2*cos t)-2*cos(n*t) = 4*sum(m=0,..,n-2) A(n,m)*cos(m*t).
A(n,m) is not an integer for n=0, so the table starts at n=1. Furthermore, A(n,m)=0 if n-m is odd, these regular zeros are skipped as usual, so effectively the first table entry appears at n=2.
Simpler definition from R. J. Mathar, Apr 15 2010: a(n)=1 if n =0 or n in A002061, otherwise a(n)=2. So this is a kind of characteristic function of the central polygonal numbers A002061.

Examples

			Using T^m =cos(m*t) as a notational shortcut, the expansions start
; B_1(2 cos t)-2*cos 1 t = 0
1 ; B_2(2 cos t)-2*cos 2 t = 1
0 2 ; B_3(2 cos t)-2*cos 3 t = 2*T
1 0 2 ; B_4(2 cos t)-2*cos 4 t = 1+2*T^2
0 2 0 2 ; B_5(2 cos t)-2*cos 5 t = 2*T+2*T^3
1 0 2 0 2 ; B_6(2 cos t)-2*cos 6 t = 1+2*T^2+2*T^4
0 2 0 2 0 2 ; B_7(2 cos t)-2*cos 7 t = 2*T+2*T^3+2*T^5
1 0 2 0 2 0 2 ; B_8(2 cos t)-2*cos 8 t = 1+2*T^2+2*T^4+2*T^6
0 2 0 2 0 2 0 2 ; B_9(2 cos t)-2*cos 9 t = 2*T+2*T^3+2*T^5+2*T^7
1 0 2 0 2 0 2 0 2 ; B_10(2 cos t)-2*cos 10 t = 1+2*T^2+2*T^4+2*T^6+2*T^8
0 2 0 2 0 2 0 2 0 2 ; B_11(2 cos t)-2*cos 11 t = 2*T^3+2*T^5+2*T^7+2*T^9+2*T
		

Programs

  • Mathematica
    centralPolygonalQ[n_] := Resolve[Exists[k, k>0, n == k^2-k+1], Integers];
    b[n_] := If[n == 0 || centralPolygonalQ[n], 1, 2];
    a[n_] := b[n-1];
    Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Oct 31 2018, after R. J. Mathar *)

Extensions

Definition clarified, publication title corrected, sequence extended by R. J. Mathar, Dec 07 2009