A160242 Triangle A(n,m) read by rows: a quarter of the Fourier coefficient [cos(m*t)] of the shifted Boubaker polynomial B_n(2*cos t)-2*cos(n*t).
1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 2
Examples
Using T^m =cos(m*t) as a notational shortcut, the expansions start ; B_1(2 cos t)-2*cos 1 t = 0 1 ; B_2(2 cos t)-2*cos 2 t = 1 0 2 ; B_3(2 cos t)-2*cos 3 t = 2*T 1 0 2 ; B_4(2 cos t)-2*cos 4 t = 1+2*T^2 0 2 0 2 ; B_5(2 cos t)-2*cos 5 t = 2*T+2*T^3 1 0 2 0 2 ; B_6(2 cos t)-2*cos 6 t = 1+2*T^2+2*T^4 0 2 0 2 0 2 ; B_7(2 cos t)-2*cos 7 t = 2*T+2*T^3+2*T^5 1 0 2 0 2 0 2 ; B_8(2 cos t)-2*cos 8 t = 1+2*T^2+2*T^4+2*T^6 0 2 0 2 0 2 0 2 ; B_9(2 cos t)-2*cos 9 t = 2*T+2*T^3+2*T^5+2*T^7 1 0 2 0 2 0 2 0 2 ; B_10(2 cos t)-2*cos 10 t = 1+2*T^2+2*T^4+2*T^6+2*T^8 0 2 0 2 0 2 0 2 0 2 ; B_11(2 cos t)-2*cos 11 t = 2*T^3+2*T^5+2*T^7+2*T^9+2*T
Links
- A. Luzon and M. A. Morón, Recurrence relations for polynomial sequences via Riordan matrices, arXiv:0904.2672 [math.CO]
Programs
-
Mathematica
centralPolygonalQ[n_] := Resolve[Exists[k, k>0, n == k^2-k+1], Integers]; b[n_] := If[n == 0 || centralPolygonalQ[n], 1, 2]; a[n_] := b[n-1]; Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Oct 31 2018, after R. J. Mathar *)
Extensions
Definition clarified, publication title corrected, sequence extended by R. J. Mathar, Dec 07 2009
Comments