This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160246 #11 Sep 08 2022 08:45:45 %S A160246 1,14,-1486,-67900,6547756,548499784,-47387630984,-6198886653904, %T A160246 471157554050960,90008424571645664,-5872265109220393184, %U A160246 -1596153412824165573056,86302501271257396667584,33424995502240561479908480,-1419140555765946374814673024 %N A160246 Numerator of Hermite(n, 7/29). %H A160246 G. C. Greubel, <a href="/A160246/b160246.txt">Table of n, a(n) for n = 0..371</a> %F A160246 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160246 a(n) = 29^n * Hermite(n, 7/29). %F A160246 E.g.f.: exp(14*x - 841*x^2). %F A160246 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160246 Numerators of 1, 14/29, -1486/841, -67900/24389, 6547756/707281,... %t A160246 Table[29^n*HermiteH[n, 7/29], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *) %o A160246 (PARI) a(n)=numerator(polhermite(n, 7/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160246 (PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 841*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160246 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160246 Cf. A009973 (denominators) %K A160246 sign,frac %O A160246 0,2 %A A160246 _N. J. A. Sloane_, Nov 12 2009