This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160256 #37 Oct 06 2024 20:43:54 %S A160256 1,2,3,4,6,8,9,16,18,24,12,10,30,5,36,15,48,20,60,7,120,14,180,21,240, %T A160256 28,300,35,360,42,420,11,840,22,1260,33,1680,44,2100,55,2520,66,2940, %U A160256 77,3360,88,3780,110,378,165,126,220,63,440,189,880,567,1760 %N A160256 a(1)=1, a(2)=2. For n >=3, a(n) = the smallest positive integer not occurring earlier in the sequence such that a(n)*a(n-1)/a(n-2) is an integer. %C A160256 Is this sequence a permutation of the positive integers? %C A160256 a(n+2)*a(n+1)/a(n) = A160257(n). %C A160256 From _Alois P. Heinz_, May 07 2009: (Start) %C A160256 After computing about 10^7 elements of A160256 we have %C A160256 a(10000000) = 2099597439752627193722111679586865799879114417 %C A160256 a(10000001) = 992131130100042530286371815859160 %C A160256 Largest element so far: %C A160256 a(8968546) = 24941014474345046106920043019655502800839523254002490663461\ %C A160256 524119982890708516899294655028121578883343551450916846444559467340663409\ %C A160256 549447588184641816 %C A160256 Still missing: %C A160256 19, 23, 27, 29, 31, 32, 37, 38, 41, 43, 45, 46, 47, 53, 54, 57, 58, 59, %C A160256 61, 62, 64, 67, 69, 71, 72, 73, 74, 76, 79, 81, 82, 83, 86, 87, 89, 90, %C A160256 92, 93, 94, 95, 96, 97, 101, 103, 105, 106, 107, 108, 109, 111, 112, 113, %C A160256 114, 115, 116, 118, 122, 123, 124, 125, 127, 128, 129, 131, 133, 134, ... %C A160256 Primes in sequence so far: %C A160256 2, 3, 5, 7, 11, 13, 17 %C A160256 The sequence consists of two subsequences, even (=red) and odd (=blue), see plot. (End) %C A160256 a(n) is the least multiple of a(n-2)/gcd(a(n-1),a(n-2)) that has not previously occurred. - _Thomas Ordowski_, Jul 15 2015 %H A160256 Alois P. Heinz, <a href="/A160256/b160256.txt">Table of n, a(n) for n = 1..130000</a> %H A160256 Alois P. Heinz, <a href="/A160256/a160256_plot.jpg">Color plot of first 600 terms</a> %p A160256 b:= proc(n) option remember; false end: %p A160256 a:= proc(n) option remember; local k, m; %p A160256 if n<3 then b(n):=true; n %p A160256 else m:= denom(a(n-1)/a(n-2)); %p A160256 for k from m by m while b(k) do od; %p A160256 b(k):= true; k %p A160256 fi %p A160256 end: %p A160256 seq(a(n), n=1..100); # _Alois P. Heinz_, May 16 2009 %p A160256 # alternative %p A160256 A160256 := proc(n) %p A160256 local r,m,a,fnd,i ; %p A160256 option remember; %p A160256 if n <=2 then %p A160256 n; %p A160256 else %p A160256 r := procname(n-2)/igcd(procname(n-1),procname(n-2)) ; %p A160256 for m from 1 do %p A160256 a := m*r ; %p A160256 fnd := false; %p A160256 for i from 1 to n-1 do %p A160256 if procname(i) = a then %p A160256 fnd := true; %p A160256 break; %p A160256 end if; %p A160256 end do: %p A160256 if not fnd then %p A160256 return a ; %p A160256 end if; %p A160256 end do: %p A160256 end if; %p A160256 end proc: %p A160256 seq(A160256(n),n=1..40) ; # _R. J. Mathar_, Jul 30 2024 %t A160256 f[s_List] := Block[{k = 1, m = Denominator[ s[[ -1]]/s[[ -2]]]}, While[ MemberQ[s, k*m] || Mod[k*m*s[[ -1]], s[[ -2]]] != 0, k++ ]; Append[s, k*m]]; Nest[f, {1, 2}, 56] (* _Robert G. Wilson v_, May 17 2009 *) %o A160256 (PARI) %o A160256 LQ(nMax)={my(a1=1,a2=1,L=1/*least unseen number*/,S=[]/*used numbers above L*/); %o A160256 while(1, /*cleanup*/ while( setsearch(S,L),S=setminus(S,Set(L));L++); %o A160256 /*search*/ for(a=L,nMax, a*a2%a1 & next; setsearch(S,a) & next; %o A160256 print1(a","); a1=a2; S=setunion(S,Set(a2=a)); next(2));return(L))} \\ _M. F. Hasler_, May 06 2009 %o A160256 (PARI) L=10^4;a=vector(L);b=[1,2];a[1]=1;a[2]=2;sb=2;P2=2;pending=[];sp=0;for(n=3,L,if(issquare(n),b=vecsort(concat(b,pending));sb=n-1;while(sb>=2*P2,P2*=2);sp=0;pending=[]);c=a[n-2]/gcd(a[n-2],a[n-1]);u=0;while(1,u+=c;found=0;s=0;pow2=P2;while(pow2,s2=s+pow2;if((s2<=sb)&&(b[s2]<=u),s=s2);pow2\=2);if((s>0)&&(b[s]==u),found=1,for(i=1,sp,if(pending[i]==u,found=1;break)));if(found==0,break));a[n]=u;pending=concat(pending,u);sp++);a \\ _Robert Gerbicz_, May 16 2009 %o A160256 (Haskell) %o A160256 import Data.List (delete) %o A160256 a160256 n = a160256_list !! (n-1) %o A160256 a160256_list = 1 : 2 : f 1 2 [3..] where %o A160256 f u v ws = g ws where %o A160256 g (x:xs) | mod (x * v) u == 0 = x : f v x (delete x ws) %o A160256 | otherwise = g xs %o A160256 -- _Reinhard Zumkeller_, Jan 31 2014 %o A160256 (Python) %o A160256 from math import gcd %o A160256 A160256_list, l1, l2, m, b = [1, 2], 2, 1, 1, {1, 2} %o A160256 for _ in range(10**3): %o A160256 i = m %o A160256 while True: %o A160256 if not i in b: %o A160256 A160256_list.append(i) %o A160256 l1, l2, m = i, l1, l1//gcd(l1, i) %o A160256 b.add(i) %o A160256 break %o A160256 i += m # _Chai Wah Wu_, Dec 09 2014 %Y A160256 Cf. A075075, A160257, A151413, A160218, A151546, A064413. %Y A160256 For records see A151545, A151547. %K A160256 nonn,look %O A160256 1,2 %A A160256 _Leroy Quet_, May 06 2009 %E A160256 More terms from _M. F. Hasler_, May 06 2009 %E A160256 Edited by _N. J. A. Sloane_, May 16 2009