This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160259 #13 Mar 18 2023 16:56:55 %S A160259 1,22,-1198,-100364,3837100,759665192,-15557376776,-8008803406736, %T A160259 6978879212432,107919993983713120,2268593594123893024, %U A160259 -1765305239735329031872,-80810233952657507431232,33853095811859416015817344,2511764683469716209839300480 %N A160259 Numerator of Hermite(n, 11/29). %H A160259 G. C. Greubel, <a href="/A160259/b160259.txt">Table of n, a(n) for n = 0..371</a> %F A160259 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160259 a(n) = 29^n * Hermite(n, 11/29). %F A160259 E.g.f.: exp(22*x - 841*x^2). %F A160259 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160259 Numerators of 1, 22/29, -1198/841, -100364/24389, 3837100/707281,... %t A160259 Table[29^n*HermiteH[n, 11/29], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *) %t A160259 HermiteH[Range[0,20],11/29]//Numerator (* _Harvey P. Dale_, Mar 18 2023 *) %o A160259 (PARI) a(n)=numerator(polhermite(n, 11/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160259 (PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - 841*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160259 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160259 Cf. A009973 (denominators). %K A160259 sign,frac %O A160259 0,2 %A A160259 _N. J. A. Sloane_, Nov 12 2009