This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160269 #13 Sep 08 2022 08:45:45 %S A160269 1,30,-782,-124380,214572,843265800,23493423480,-7805435749200, %T A160269 -510774640529520,89706704225349600,10423307635096361760, %U A160269 -1196167536017489419200,-228737063945077567859520,17281333628624679401347200,5520004649081806480856680320 %N A160269 Numerator of Hermite(n, 15/29). %H A160269 G. C. Greubel, <a href="/A160269/b160269.txt">Table of n, a(n) for n = 0..372</a> %F A160269 From _G. C. Greubel_, Sep 26 2018: (Start) %F A160269 a(n) = 29^n * Hermite(n, 15/29). %F A160269 E.g.f.: exp(30*x - 841*x^2). %F A160269 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160269 Numerators of 1, 30/29, -782/841, -124380/24389, 214572/707281,... %t A160269 Numerator[HermiteH[Range[0,20],15/29]] (* _Harvey P. Dale_, Dec 12 2012 *) %t A160269 Table[29^n*HermiteH[n, 15/29], {n, 0, 30}] (* _G. C. Greubel_, Sep 26 2018 *) %o A160269 (PARI) a(n)=numerator(polhermite(n, 15/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160269 (PARI) x='x+O('x^30); Vec(serlaplace(exp(30*x - 841*x^2))) \\ _G. C. Greubel_, Sep 26 2018 %o A160269 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(30/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Sep 26 2018 %Y A160269 Cf. A009973 (denominators). %K A160269 sign,frac %O A160269 0,2 %A A160269 _N. J. A. Sloane_, Nov 12 2009