This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160279 #15 Sep 08 2022 08:45:45 %S A160279 1,34,-526,-132260,-1842644,827195384,43621279096,-6864932326064, %T A160279 -747004639162480,66976371647992864,13585352863673379616, %U A160279 -664640573754345065536,-273953978191332601883456,4100670082152392338741120,6129700469924860012300846976 %N A160279 Numerator of Hermite(n, 17/29). %H A160279 G. C. Greubel, <a href="/A160279/b160279.txt">Table of n, a(n) for n = 0..371</a> %F A160279 From _G. C. Greubel_, Oct 03 2018: (Start) %F A160279 a(n) = 29^n * Hermite(n, 17/29). %F A160279 E.g.f.: exp(34*x - 841*x^2). %F A160279 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(34/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160279 Numerators of 1, 34/29, -526/841, -132260/24389, -1842644/707281, ... %t A160279 Numerator[HermiteH[Range[0,20],17/29]] (* _Harvey P. Dale_, Dec 24 2015 *) %t A160279 Table[29^n*HermiteH[n, 17/29], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *) %o A160279 (PARI) a(n)=numerator(polhermite(n, 17/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160279 (PARI) x='x+O('x^30); Vec(serlaplace(exp(34*x - 841*x^2))) \\ _G. C. Greubel_, Oct 03 2018 %o A160279 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(34/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018 %Y A160279 Cf. A009973 (denominators). %K A160279 sign,frac %O A160279 0,2 %A A160279 _N. J. A. Sloane_, Nov 12 2009