This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160280 #13 Sep 08 2022 08:45:45 %S A160280 1,36,-386,-135000,-2912244,803439216,53415783816,-6185340350496, %T A160280 -851589691267440,52572710870646336,14783982337749774816, %U A160280 -352049632685279478144,-286207027989716394858816,-3197683221510109228058880,6143086278048774757772750976 %N A160280 Numerator of Hermite(n, 18/29). %H A160280 G. C. Greubel, <a href="/A160280/b160280.txt">Table of n, a(n) for n = 0..371</a> %F A160280 From _G. C. Greubel_, Oct 03 2018: (Start) %F A160280 a(n) = 29^n * Hermite(n, 18/29). %F A160280 E.g.f.: exp(36*x - 841*x^2). %F A160280 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/29)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160280 Numerators of 1, 36/29, -386/841, -135000/24389, -2912244/707281, ... %t A160280 Table[29^n*HermiteH[n, 18/29], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *) %o A160280 (PARI) a(n)=numerator(polhermite(n, 18/29)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160280 (PARI) x='x+O('x^30); Vec(serlaplace(exp(36*x - 841*x^2))) \\ _G. C. Greubel_, Oct 03 2018 %o A160280 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(36/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018 %Y A160280 Cf. A009973 (denominators). %K A160280 sign,frac %O A160280 0,2 %A A160280 _N. J. A. Sloane_, Nov 12 2009