This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160291 #13 Sep 08 2022 08:45:45 %S A160291 1,1,-449,-1349,604801,3033001,-1357769249,-9546871949,4267426262401, %T A160291 38636165278801,-17244440197445249,-191107183952049749, %U A160291 85168871793401932801,1117147665134470577401,-497120752326266836308449,-7535151042673431473934749,3348029927159627713608096001 %N A160291 Numerator of Hermite(n, 1/30). %H A160291 G. C. Greubel, <a href="/A160291/b160291.txt">Table of n, a(n) for n = 0..412</a> %F A160291 From _G. C. Greubel_, Oct 03 2018: (Start) %F A160291 a(n) = 15^n * Hermite(n, 1/30). %F A160291 E.g.f.: exp(x - 225*x^2). %F A160291 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160291 Numerators of 1, 1/15, -449/225, -1349/3375, 604801/50625, ... %t A160291 Table[15^n*HermiteH[n, 1/30], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *) %o A160291 (PARI) a(n)=numerator(polhermite(n, 1/30)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160291 (PARI) x='x+O('x^30); Vec(serlaplace(exp(x - 225*x^2))) \\ _G. C. Greubel_, Oct 03 2018 %o A160291 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018 %Y A160291 Cf. A001024 (denominators). %K A160291 sign,frac %O A160291 0,3 %A A160291 _N. J. A. Sloane_, Nov 12 2009