This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160292 #13 Sep 08 2022 08:45:45 %S A160292 1,7,-401,-9107,477601,19735807,-936451601,-59841840107,2530929662401, %T A160292 233147132022007,-8618235208570001,-1109489740559021507, %U A160292 34893836098508354401,6235501451708274618607,-160480431014315950915601,-40407022162862341753633307,800393754206596276404873601 %N A160292 Numerator of Hermite(n, 7/30). %H A160292 G. C. Greubel, <a href="/A160292/b160292.txt">Table of n, a(n) for n = 0..412</a> %F A160292 From _G. C. Greubel_, Oct 03 2018: (Start) %F A160292 a(n) = 15^n * Hermite(n, 7/30). %F A160292 E.g.f.: exp(7*x - 225*x^2). %F A160292 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160292 Numerators of 1, 7/15, -401/225, -9107/3375, 477601/50625, ... %t A160292 Table[15^n*HermiteH[n, 7/30], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *) %o A160292 (PARI) a(n)=numerator(polhermite(n, 7/30)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160292 (PARI) x='x+O('x^30); Vec(serlaplace(exp(7*x - 225*x^2))) \\ _G. C. Greubel_, Oct 03 2018 %o A160292 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(7/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018 %Y A160292 Cf. A001024 (denominators). %K A160292 sign,frac %O A160292 0,2 %A A160292 _N. J. A. Sloane_, Nov 12 2009