cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160295 Numerator of Hermite(n, 17/30).

This page as a plain text file.
%I A160295 #15 Sep 08 2022 08:45:45
%S A160295 1,17,-161,-18037,-89279,30948857,727008319,-71202772477,
%T A160295 -3500523336959,196821084188897,17523077945895199,-587802553769818117,
%U A160295 -96731879246268143039,1529691843170459400137,591886254924566446580479,425007721743735371005043
%N A160295 Numerator of Hermite(n, 17/30).
%H A160295 G. C. Greubel, <a href="/A160295/b160295.txt">Table of n, a(n) for n = 0..412</a>
%F A160295 From _G. C. Greubel_, Oct 03 2018: (Start)
%F A160295 a(n) = 15^n * Hermite(n, 17/30).
%F A160295 E.g.f.: exp(17*x - 225*x^2).
%F A160295 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
%e A160295 Numerators of 1, 17/15, -161/225, -18037/3375, -89279/50625, ...
%t A160295 Numerator[HermiteH[Range[0,20],17/30]] (* _Harvey P. Dale_, Jan 02 2016 *)
%t A160295 Table[15^n*HermiteH[n, 17/30], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *)
%o A160295 (PARI) a(n)=numerator(polhermite(n, 17/30)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A160295 (PARI) x='x+O('x^30); Vec(serlaplace(exp(17*x - 225*x^2))) \\ _G. C. Greubel_, Oct 03 2018
%o A160295 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(17/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018
%Y A160295 Cf. A001024 (denominators).
%K A160295 sign,frac
%O A160295 0,2
%A A160295 _N. J. A. Sloane_, Nov 12 2009