cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160296 Numerator of Hermite(n, 19/30).

This page as a plain text file.
%I A160296 #16 Sep 08 2022 08:45:45
%S A160296 1,19,-89,-18791,-236879,29323099,1090116631,-58460151311,
%T A160296 -4544610262559,124108949730979,20763741608252551,-163979183232607031,
%U A160296 -105896125442269661039,-1126538793947045592341,598088096752283650823671,18460868240159776597398049
%N A160296 Numerator of Hermite(n, 19/30).
%H A160296 G. C. Greubel, <a href="/A160296/b160296.txt">Table of n, a(n) for n = 0..412</a>
%F A160296 From _G. C. Greubel_, Oct 03 2018: (Start)
%F A160296 a(n) = 15^n * Hermite(n, 19/30).
%F A160296 E.g.f.: exp(19*x - 225*x^2).
%F A160296 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(19/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
%e A160296 Numerators of 1, 19/15, -89/225, -18791/3375, -236879/50625, ...
%t A160296 Numerator[HermiteH[Range[0,20],19/30]] (* _Harvey P. Dale_, Sep 10 2011 *)
%t A160296 Table[15^n*HermiteH[n, 19/30], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *)
%o A160296 (PARI) a(n)=numerator(polhermite(n, 19/30)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A160296 (PARI) x='x+O('x^30); Vec(serlaplace(exp(19*x - 225*x^2))) \\ _G. C. Greubel_, Oct 03 2018
%o A160296 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(19/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018
%Y A160296 Cf. A001024 (denominators).
%K A160296 sign,frac
%O A160296 0,2
%A A160296 _N. J. A. Sloane_, Nov 12 2009