This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160297 #15 Sep 08 2022 08:45:45 %S A160297 1,23,79,-18883,-540959,21547343,1712746639,-18784653403, %T A160297 -5827198941119,-66400823394937,22072936773448399,806481251066529677, %U A160297 -90711968254039392479,-6441374025602166282817,382513411697280621497359,49378464830331101876186357 %N A160297 Numerator of Hermite(n, 23/30). %H A160297 G. C. Greubel, <a href="/A160297/b160297.txt">Table of n, a(n) for n = 0..412</a> %F A160297 From _G. C. Greubel_, Oct 03 2018: (Start) %F A160297 a(n) = 15^n * Hermite(n, 23/30). %F A160297 E.g.f.: exp(23*x - 225*x^2). %F A160297 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(23/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160297 Numerators of 1, 23/15, 79/225, -18883/3375, -540959/50625, ... %t A160297 Numerator[HermiteH[Range[0,20],23/30]] (* _Harvey P. Dale_, Sep 30 2012 *) %t A160297 Table[15^n*HermiteH[n, 23/30], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *) %o A160297 (PARI) a(n)=numerator(polhermite(n, 23/30)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160297 (PARI) x='x+O('x^30); Vec(serlaplace(exp(23*x - 225*x^2))) \\ _G. C. Greubel_, Oct 03 2018 %o A160297 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(23/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018 %Y A160297 Cf. A001024 (denominators). %K A160297 sign,frac %O A160297 0,2 %A A160297 _N. J. A. Sloane_, Nov 12 2009