This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160299 #19 Sep 08 2022 08:45:45 %S A160299 1,2,-1918,-11524,11036140,110668792,-105835967816,-1487904444976, %T A160299 1420941302106512,25719901350164000,-24528002841138116576, %U A160299 -543392509632428313152,517484251048077204023488,13567773344258481022584704,-12902725949998740057685701760 %N A160299 Numerator of Hermite(n, 1/31). %H A160299 G. C. Greubel, <a href="/A160299/b160299.txt">Table of n, a(n) for n = 0..368</a> %F A160299 a(n+2) = 2*a(n+1) - 1922*(n+1)*a(n). - _Bruno Berselli_, Mar 28 2018 %F A160299 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160299 a(n) = 31^n * Hermite(n, 1/31). %F A160299 E.g.f.: exp(2*x - 961*x^2). %F A160299 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160299 Numerators of 1, 2/31, -1918/961, -11524/29791, 11036140/923521, ... %t A160299 Table[31^n*HermiteH[n, 1/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160299 (PARI) a(n)=numerator(polhermite(n, 1/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160299 (PARI) x='x+O('x^30); Vec(serlaplace(exp(2*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160299 (Maxima) makelist(num(hermite(n, 1/31)), n, 0, 20); /* _Bruno Berselli_, Mar 28 2018 */ %o A160299 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160299 Cf. A009975 (denominators). %K A160299 sign,frac %O A160299 0,2 %A A160299 _N. J. A. Sloane_, Nov 12 2009