This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160301 #20 Sep 08 2022 08:45:45 %S A160301 1,6,-1886,-34380,10668396,328323816,-100553342664,-4389550302096, %T A160301 1326507370388880,75452769667361376,-22493207874982677984, %U A160301 -1585161480256581714624,466040432011344287649984,39356406972705866391987840,-11408347792399213172870573184 %N A160301 Numerator of Hermite(n, 3/31). %H A160301 G. C. Greubel, <a href="/A160301/b160301.txt">Table of n, a(n) for n = 0..368</a> %F A160301 a(n+2) = 6*a(n+1) - 1922*(n+1)*a(n). - _Bruno Berselli_, Mar 28 2018 %F A160301 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160301 a(n) = 31^n * Hermite(n, 3/31). %F A160301 E.g.f.: exp(6*x - 961*x^2). %F A160301 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160301 Numerators of 1, 6/31, -1886/961, -34380/29791, 10668396/923521, ... %t A160301 Table[31^n*HermiteH[n, 3/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160301 (PARI) a(n)=numerator(polhermite(n, 3/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160301 (PARI) x='x+O('x^30); Vec(serlaplace(exp(6*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160301 (Maxima) makelist(num(hermite(n, 3/31)), n, 0, 20); /* _Bruno Berselli_, Mar 28 2018 */ %o A160301 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160301 Cf. A009975 (denominators). %K A160301 sign,frac %O A160301 0,2 %A A160301 _N. J. A. Sloane_, Nov 12 2009