This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160302 #23 Sep 08 2022 08:45:45 %S A160302 1,8,-1858,-45616,10348300,433482208,-95979305336,-5766751265344, %T A160302 1245171563867792,98630939966871680,-20749930192050092576, %U A160302 -2061686107699674430208,422201535258725661800128,50928340670055096352718336,-10141700834614078614916251520 %N A160302 Numerator of Hermite(n, 4/31). %H A160302 Robert Israel, <a href="/A160302/b160302.txt">Table of n, a(n) for n = 0..368</a> %F A160302 From _Robert Israel_, Mar 27 2018: (Start) %F A160302 a(n+2) = 8*a(n+1) - 1922*(n+1)*a(n). %F A160302 E.g.f.: exp(-961*x^2+8*x). (End) %F A160302 a(n) = 31^n * Hermite(n, 4/31). - _G. C. Greubel_, Jul 12 2018 %e A160302 Numerators of 1, 8/31, -1858/961, -45616/29791, 10348300/923521, ... %p A160302 seq(orthopoly[H](n,4/31)*31^n, n=0..40); # _Robert Israel_, Mar 27 2018 %t A160302 Numerator[Table[HermiteH[n, 4/31], {n, 0, 40}]] (* _Vincenzo Librandi_, Mar 28 2018 *) %o A160302 (PARI) a(n)=numerator(polhermite(n, 4/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160302 (Magma) I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-1922*(n-2)*Self(n-2): n in [1..15]]; // _Vincenzo Librandi_, Mar 28 2018 %o A160302 (GAP) List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(8/31)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # _Muniru A Asiru_, Jul 12 2018 %Y A160302 Cf. A009975 (denominators). %K A160302 sign,frac %O A160302 0,2 %A A160302 _N. J. A. Sloane_, Nov 12 2009