This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160304 #18 Sep 08 2022 08:45:45 %S A160304 1,12,-1778,-67464,9442380,631971792,-83157610296,-8285790028896, %T A160304 1019373008575632,139634783587212480,-15957496899294732576, %U A160304 -2875270503337760656512,302870153404836108243648,69949680729840145080716544,-6728117484215153259607190400 %N A160304 Numerator of Hermite(n, 6/31). %H A160304 G. C. Greubel, <a href="/A160304/b160304.txt">Table of n, a(n) for n = 0..368</a> %F A160304 a(n+2) = 12*a(n+1) - 1922*(n+1)*a(n). - _Bruno Berselli_, Mar 28 2018 %F A160304 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160304 a(n) = 31^n * Hermite(n, 6/31). %F A160304 E.g.f.: exp(12*x - 961*x^2). %F A160304 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160304 Numerators of 1, 12/31, -1778/961, -67464/29791, 9442380/923521, ... %t A160304 Table[31^n*HermiteH[n, 6/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160304 (PARI) a(n)=numerator(polhermite(n, 6/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160304 (PARI) x='x+O('x^30); Vec(serlaplace(exp(12*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160304 (Maxima) makelist(num(hermite(n, 6/31)), n, 0, 20); /* _Bruno Berselli_, Mar 28 2018 */ %o A160304 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160304 Cf. A009975 (denominators). %K A160304 sign,frac %O A160304 0,2 %A A160304 _N. J. A. Sloane_, Nov 12 2009