This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160307 #37 Sep 08 2022 08:45:45 %S A160307 1,18,-1598,-97956,7450860,887201208,-55633142856,-11232600902064, %T A160307 546301487747472,182545898249590560,-6164096966563140576, %U A160307 -3619485909755267093568,65170591691483110373568,84652893673042176232776576,-104600317888637823603991680 %N A160307 Numerator of Hermite(n, 9/31). %H A160307 G. C. Greubel, <a href="/A160307/b160307.txt">Table of n, a(n) for n = 0..368</a> %F A160307 From _Vincenzo Librandi_, Jan 19 2017: (Start) %F A160307 E.g.f.: exp(18*x - 961*x^2). %F A160307 a(n+2) = -1922*(n+1)*a(n)+18*a(n+1). (End) %F A160307 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160307 a(n) = 31^n * Hermite(n, 9/31). %F A160307 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160307 Numerators of 1, 18/31, -1598/961, -97956/29791, 7450860/923521, ... %t A160307 Numerator[HermiteH[Range[0,20],9/31]] (* _Harvey P. Dale_, Jan 18 2017 *) %t A160307 Table[31^n*HermiteH[n, 9/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160307 (PARI) a(n)=numerator(polhermite(n, 9/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160307 (PARI) x='x+O('x^30); Vec(serlaplace(exp(18*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160307 (Sage) [numerator(hermite(n, 9/31)) for n in range(20)] # _Bruno Berselli_, Jan 19 2017 %o A160307 (Maxima) makelist(num(hermite(n, 9/31)), n, 0, 20); /* _Bruno Berselli_, Jan 19 2017 */ %o A160307 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160307 Cf. A009975 (denominators). %K A160307 sign,frac %O A160307 0,2 %A A160307 _N. J. A. Sloane_, Nov 12 2009