This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160309 #13 Sep 08 2022 08:45:45 %S A160309 1,22,-1438,-116204,5735020,1019546792,-32683512776,-12476450886416, %T A160309 165242061387152,195473234180049760,1442053974086139424, %U A160309 -3725270373510661319872,-112443853337363708739392,83445871121227891089261184,4645331284154383230526194560 %N A160309 Numerator of Hermite(n, 11/31). %H A160309 G. C. Greubel, <a href="/A160309/b160309.txt">Table of n, a(n) for n = 0..368</a> %F A160309 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160309 a(n) = 31^n * Hermite(n, 11/31). %F A160309 a(n+2) = 22*a(n+1) - 1922*(n+1)*a(n) %F A160309 E.g.f.: exp(22*x - 961*x^2). %F A160309 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160309 Numerators of 1, 22/31, -1438/961, -116204/29791, 5735020/923521, ... %t A160309 Table[31^n*HermiteH[n, 11/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160309 (PARI) a(n)=numerator(polhermite(n, 11/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160309 (PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160309 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160309 Cf. A009975 (denominators). %K A160309 sign,frac %O A160309 0,2 %A A160309 _N. J. A. Sloane_, Nov 12 2009