This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160311 #15 Sep 08 2022 08:45:45 %S A160311 1,26,-1246,-132340,3743596,1114763416,-6992108744,-13037246540656, %T A160311 -244896579015280,194093391754729376,9282649209429277216, %U A160311 -3489126110080737399104,-286971048447852951277376,73011957343257950639722880,9068569507442760557249311616 %N A160311 Numerator of Hermite(n, 13/31). %H A160311 G. C. Greubel, <a href="/A160311/b160311.txt">Table of n, a(n) for n = 0..368</a> %F A160311 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160311 a(n) = 31^n * Hermite(n, 13/31). %F A160311 a(n+2) = 26*a(n+1) - 1922*(n+1)*a(n) %F A160311 E.g.f.: exp(26*x - 961*x^2). %F A160311 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(26/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160311 Numerators of 1, 26/31, -1246/961, -132340/29791, 3743596/923521, ... %t A160311 Numerator[HermiteH[Range[0,20],13/31]] (* _Harvey P. Dale_, Jan 10 2015 *) %t A160311 Table[31^n*HermiteH[n, 13/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160311 (PARI) a(n)=numerator(polhermite(n, 13/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160311 (PARI) x='x+O('x^30); Vec(serlaplace(exp(26*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160311 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(26/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160311 Cf. A009975 (denominators). %K A160311 sign,frac %O A160311 0,2 %A A160311 _N. J. A. Sloane_, Nov 12 2009