This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160312 #13 Sep 08 2022 08:45:45 %S A160312 1,28,-1138,-139496,2655820,1146808208,6588199624,-13040522665184, %T A160312 -453772272366448,187805452873608640,13107905447855859424, %U A160312 -3242599451690793996928,-367920121625910811856192,64485550348270970013174016,10998447568696594705407685760 %N A160312 Numerator of Hermite(n, 14/31). %H A160312 G. C. Greubel, <a href="/A160312/b160312.txt">Table of n, a(n) for n = 0..368</a> %F A160312 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160312 a(n) = 31^n * Hermite(n, 14/31). %F A160312 a(n+2) = 28*a(n+1) - 1922*(n+1)*a(n) %F A160312 E.g.f.: exp(28*x - 961*x^2). %F A160312 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160312 Numerators of 1, 28/31, -1138/961, -139496/29791, 2655820/923521, ... %t A160312 Table[31^n*HermiteH[n, 14/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160312 (PARI) a(n)=numerator(polhermite(n, 14/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160312 (PARI) x='x+O('x^30); Vec(serlaplace(exp(28*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160312 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160312 Cf. A009975 (denominators). %K A160312 sign,frac %O A160312 0,2 %A A160312 _N. J. A. Sloane_, Nov 12 2009